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The dynamics of a cyclonic monopolar vortex on a topographic beta-plane are stud-
ied experimentally and theoretically. Detailed measurements of the vortex structure
are conducted using high-resolution quantitative velocity measurements. The initial
velocity profiles were described in terms of a radius Rvm, maximum azimuthal velocity
vθm, and a dimensionless parameter α which characterizes the steepness of the velocity
profile. The initial direction of motion of the monopolar vortex is critically dependent
on α and weakly dependent of the initial strength and size of the vortex: isolated vor-
tices (α ∼ 3) move north, whereas non-isolated vortices characterized by α ∼ 1 move
northwest. When the azimuthal velocity decays slowly with radial distance (α < 1.4),
Rossby wave generation dominates the vortex dynamics and the translational speed
of the vortex correlates with the Rossby wave speed. When the azimuthal velocity
decays rapidly with radial distance (α > 1.4) the vortex is isolated and the transla-
tional speed is much slower than the Rossby wave speed. To interpret the effect of the
vortex structure on the direction of motion, a mechanistic model is developed which
includes the Rossby force and a lift force arising from circulation around the vortex,
but does not include the effect of Rossby waves. The Rossby force results from the
integrated effect of the Coriolis force on the vortex and drives the vortex north; the
lift force is determined from the circulation around the vortex and drives the vortex
west. Comparison with the experimental data reveals two regimes: α < 1.4, where the
vortex dynamics are dominated by Rossby waves whereas for α > 1.4 Rossby waves
are weak and favourable agreement is found with the mechanistic model.

1. Introduction
The propagation of monopolar vortices in the presence of a vorticity gradient has

been a subject of wide interest. In geophysical flows, vortices such as hurricanes,
tropical cyclones in the atmosphere or meso-scale eddies in the ocean are known to
translate over large distances owing to the variation of the planetary Coriolis force.
The self-induced propagation of vortices plays an important role in the transport
of mass, heat and momentum over large distances. Experimental, theoretical and
numerical studies have shown conclusively that cyclonic monopolar vortices tend to
move towards the northwest direction (e.g. van Heijst 1994). Although there has been
a great deal of progress in interpreting and modelling the dynamics of monopolar
vortices on the beta-plane, issues such as which parameters control their direction of
translation, speed and characteristic structure are still not fully understood. The aim
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of this paper is to resolve some of these issues through a systematic experimental
study over a wide range of parameters and to compare these results with a mechanistic
model, based on potential flow theory.

Rossby (1948) originally explained the drift of monopolar vortices on a beta-plane
by the integrated effect of the Coriolis force over the vortex which results in a net force
to the north, later referred to as the Rossby force. The effect of fluid advection by the
vortex, which was not taken into account by Rossby (1948), is to generate positive
vorticity at its west (by displacing fluid north) and negative vorticity at its east (by
displacing fluid south), leading to a westward shift of the vorticity maximum (Flierl
et al. 1980). In addition, the nonlinear interaction of vorticity generated outside the
vortex leads to a dipolar component which transports the vortex centre perpendicular
to the direction of the shift (Stern & Radko 1998). As has been demonstrated in
various experimental and numerical simulations, most vortices do propagate to the
northwest.

Reznik (1992) examined the motion of singular vortices on the beta-plane and
focused on the distortion of the ambient potential vorticity field by the vortical
flow. The intensity of the vortices was characterized by δ, the ratio between the
turnover time scale within the vortex and the time period of oscillation of long
Rossby waves. Intense vortices (δ � 1) were found to move initially northward, and
ultimately tend to an almost zonal velocity close to the Rossby wave speed. Intense
vortices wrap around ambient (oppositely signed) vorticity and eventually become
isolated. Moderate vortices (δ > 1) were found to be more complicated because of
their interaction with Rossby waves. These vortices do not show a dipolar motion
alternating in westward and northward directions which is observed for intense
vortices (see Reznik 1992; Korotaev & Fedotov 1994) and thus behave differently.
Calculation of the change of the vortical field and induced velocity at the vortex
centre, permitted the vortex trajectory to be determined. This trajectory is unique
because the vortex area is infinitesimally small.

Reznik & Dewar (1994) further developed Reznik’s (1992) analysis by consid-
ering the dynamics of intense barotropic vortices of arbitrary initial velocity field,
including isolated vortices. Llewellyn Smith (1997) also examined intense non-isolated
vortices, and focused on the connection between the near-field and the far-field flow –
dominated by Rossby waves – using matched asymptotic analysis. A weakness in the
predictive power of these models is their failure to predict uniquely the vortex trajec-
tory because its centre can be identified with either the relative vorticity maximum or
the maximum of the streamfunction.

Sutyrin & Flierl (1994) showed that the direction of translation depends on the
relative size of the vortex to the deformation radius. When the vortex is much smaller
than the deformation radius, it initially moves northward, whereas axisymmetrization
due to the differential rotation and advection of vorticity leads to a gradual westward
motion in agreement with Reznik (1992). However, when the vortex is comparable
to the deformation radius, the initial meridional motion is negligible, as confirmed
by experimental measurements by Stegner & Zeitlin (1998) for low-Rossby-number
vortices. Stegner & Zeitlin (1998) suggest a quasi-geostrophic regime with a vortex
scale smaller than the deformation radius, and an ageostrophic regime represented
by a vortex scale larger than the deformation radius.

Despite the large number of analytical and numerical studies on monopolar vortices
moving on the beta-plane there are comparatively few laboratory investigations. In
most laboratory experiments the vorticity gradient is modelled by a topographic beta-
plane consisting of a sloping bottom in a tank rotating at a constant angular velocity.
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Geometry and size Mean depth H0 (m) slope
dH

dy
Ω (rad s−1) β (m−1 s−1) Ro δ Bu1/2

Present experiments:
square (0.96 m× 0.96 m) 0.182 5/96 (slope) 0.5 0.289 0.1–0.8 8–107 0.012–0.04
circular (diameter 13.0 m) 0.35 16/300 (slope) 0.125 0.0406 0.2–1.2 12–64 0.012–0.018

Carnevale et al. (1991):
circular (diameter 0.925 m) 0.171 10/75 (slope) 0.6 0.914 O(1) O(10) 0.1–0.3

0.171, 0.165 5/46 (cone) 0.6, 1.0 0.76, 1.32 O(1) O(0.1)
Firing & Beardsley (1976):

circular (diameter 0.279 m) 0.08 2.79/27.9 6.28 15.7 0.02–0.15 0.81–6.1 0
rigid lid

Masuda et al. (1990):
square (0.508 m× 0.508 m) 0.24 16.9/50.8 1.99 6.81 0.4 4.7 0.008

Stegner & Zeitlin (1998):
parabolic (0.45 m) 4–24 mm 7.43 ≈ 0.1 0.1–0.3 ≈ 2–5 0.8–4.2
z = 2.67r2 (mean)

Table 1. Parameters of relevant rotating tank experiments on β-plane monopolar vortices. The first 5 parameters are background constants, the latter
three concern the vortex dynamics, with Ro = vθm/fRvm the Rossby number, δ = vθm/βR

2
vm is the ratio of vortex maximum velocity compared to the

phase speed of Rossby waves, and the Burgers number Bu = (Rvm/Rd)
2 defined as the ratio of vortex radius to the deformation scale Rd =

√
gH/f.

The strength of the beta-plane is characterized by β = 2Ω(dH/dy)/H where H is the mean water depth corrected for the surface deformation Ω2r2/2g.
For the parabolic vessel β = RvmΩ

2 cos θ sin θ/g.
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Table 1 summarizes the relevant experimental studies. The physical analogy between
a (planetary) beta-plane, characterized by a gradient of the Coriolis parameter,
and a topographic beta-plane is based on the dynamical equivalence between the
displacement of fluid and the production of potential vorticity. Carnevale, Kloosterziel
& van Heijst (1991) studied the dynamics of monopolar vortices on a topographic
beta-plane (generated by a slope and a cone) and comparisons with numerical
simulations for the motion of the vortex centre and transport of dye showed good
agreement. Only two types of vortex were studied by Carnevale et al. (1991): a quasi
non-isolated vortex (generated by a sink) and an isolated vortex (generated by stirring
the fluid), which were observed to move to the northwest and north, respectively, at
least during an initial stage of the flow evolution. It is also relevant to mention the
more recent experimental study on monopolar vortices in a thin layer of fluid on a
rotating parabolic dish by Stegner & Zeitlin (1998), who varied the relative size of
the vortex to the deformation radius.

The influence of the beta-plane and free-surface deformation on the generation
of potential vorticity may be understood from the vorticity equation. The non-
dimensional potential vorticity is defined by

Π =
f

H0

[1 + Ro(ω − Buη + ηb)], (1.1)

with ηb the beta-effect due to the inclined bottom and η the surface deformation. The
leading-order non-dimensional vorticity equation becomes

D

Dt
[ω − Buη] +

1

δ
uy = 0, (1.2)

which is derived in the limit of small Rossby number Ro = vθm/fRvm, with f being
twice the rotation rate, and Rvm, vθm the vortex radius and maximum azimuthal
velocity, respectively (see Pedlosky 1979 p. 92). The Burgers number Bu = (Rvm/Rd)

2

is defined as the ratio of vortex radius to the deformation radius Rd =
√
gH/f (H is

the water depth). The strength of the beta-plane, β, depends on the tank geometry and
is defined in Table 1. Equations (1.1) and (1.2) show that for small Bu, free-surface
deformation has a negligible effect on vorticity production, whereas for Bu � 1,
surface deformation is important. Except for the experiments of Stegner & Zeitling
(1998) (see table 1), most experiments are conducted over the parameter space Bu� 1
and Ro < O(1).

In this paper, the dynamics of vortices characterized by Bu� 1, 0.1 < Ro < 1, and
δ � 1 (see table 1) are reported. The internal structure of the monopolar vortices is
varied systematically, and quantitative information about their evolution is acquired.
Experimental observations on the various vortex wakes for the different initial velocity
profiles are discussed in § 3.2. Quantitative measurements show a relation between
this initial profile and its direction of propagation (§§ 4.1 and 4.2). The influence of
dominant Rossby waves on the vortex translation is discussed in § 4.3. The vortex
structure is discussed in comparison with a physical model incorporating the Rossby
force and circulation-induced lift force in §§ 5.1 and 5.2. These results are discussed in
a broader context in § 6 and the conclusions are presented in § 7.

2. Experimental set-up
The experiments were conducted in two different containers, the 13 m diameter

Coriolis platform of LEGI, Grenoble, and a small container, whose dimensions are
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indicated in table 1. Cyclonic vortices were generated either by suction of fluid from
the surface, or by stirring the fluid in a confined cylinder (see Carnevale et al. 1991).
Suction typically generated vortices whose azimuthal velocity decays slowly with
radius. At the level of the sink, vorticity is generated locally by stretching background
vorticity while the ambient flow is essentially irrotational. The suction speed and total
volume siphoned were varied, but no systematic tendency to form steeper velocity
profiles for short or long suction times compared to the period of background rotation
was observed.

Velocity profiles of vortices generated by stirring fluid in the cylinder were steeper
than those generated by suction. Vortices created in this manner contain positive
vorticity, surrounded by an outer ring of negative vorticity. Care was taken to ensure
that the flow was axisymmetric before lifting the cylinder. Removing the cylinder at
different stages of this decay resulted in velocity profiles with different steepness. In
all cases, the velocity profile was measured shortly after their generation using particle
image velocimetry as discussed below.

The vortex and the displacement of ambient fluid were visualized using the pre-
cipitation method of Honyi, Taneda & Tatsudo (1980). This method is based on the
electrolytic reaction of solder wire and results in the generation of a white powder
that acts as a passive tracer. The water was made slightly salty to guide the current.
The vortex was visualized by placing a solder wire either in the cylinder or near to the
sink in the water. In order to generate horizontal dye lines, 0.5 mm diameter solder
wires were spanned in the flow. As the vortex approached the wires, the voltage was
turned on and the dyelines were advected, showing the displacement of the ambient
fluid, thus giving qualitative information about fluid displacement and the generation
of potential vorticity.

Quantitative information about the velocity field was obtained using the commer-
cially available image processing software CIV developed by Fincham & Spedding
(1997). The fluid was seeded with 0.2 mm diameter particles of density 1.02 g cm−3

and was made neutrally buoyant by the addition of salt. The flow was illuminated
by a horizontal laser sheet which was stable within the rotating frame of reference.
Images of the experiments were captured by a digital video camera, transferred onto
the hard drive of a PC by a framegrabber card and saved for post-processing.

3. Observations and measurements

3.1. Dye visualizations

In order to discern the different evolutions possible for suction vortices, a range
of vortex strengths was generated. Figure 1 shows the flow evolution of an intense
suction vortex (δ ≈ 30, vθm ≈ 1 cm s−1, Rvm ≈ 9 cm) generated at the Coriolis platform
on a beta-plane of dimensions 3.0× 4.5 m2 with the shallow (north) side close to the
axes of rotation. To visualize how ambient fluid was advected by the vortex, a dye
line was generated from east to west about 50 cm north of the initial position of
the vortex. To the east (west) of the vortex, fluid is advected to the north (south),
thus inducing positive (negative) vorticity. Initially, the dye remained compact in the
vortex (figure 1a,b), suggesting that vorticity generated by the displacement of ambient
fluid is entrained around the intense core-vortex. The velocity profile is steepened by
negative vorticity continuously being wrapping around the vortex, which eventually
causes the vortex to become elliptical by a mode two instability (figure 1c,d ). The
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(a) (b)

(c) (d)

Figure 1. Sequence of images showing the evolution of a non-isolated (sink) vortex at (a) 49 s, (b)
137 s, (c) 313 s, (d ) 739 s after the vortex has been generated. The rotation rate is f = 0.25 s−1, and
β = 0.041 m−1 s−1. The field of view is 1.91 × 1.38 m2 with the shallow part of the tank at the top
of the figures.

herringbone-shaped wake observed is typical for isolated vortices (e.g. see Carnevale
et al. 1991) and contains dyed fluid that was initially confined in the vortex.

Figure 2 shows the typical time evolution of a vortex generated by the stirring
method. Owing to the steepness of the velocity profile these vortices often become
barotropically unstable. The vortex core first becomes elliptical and then eventually
evolves into a tripolar vortex (see Carton, Flierl & Polvani 1989; van Heijst, Kloos-
terziel & Williams 1991) as seen in figures 2(a) to 2(c). Owing to the northward
displacement of the vortex and its rotation around the core centre (figure 2a–c), fluid
is advected southward at the east and generates cyclonic vorticity which detrains
anticyclonic vorticity from the parent vortex (figure 2). Eventually, this develops into
an unstable shear layer. To the west of the vortex, the rotational motion equilibrates
the vortex translation so that the dye line remains undisturbed over the course of the
experiment (figure 2c–e), in contrast to sink-vortices, as shown in figure 1. The eccen-
tricity of the vortex changes from circular to elliptical owing to a mode two instability
and finally back to circular. The secondary and tertiary vortices generated by displac-
ing the ambient fluid form a dipole which moves to the west (figure 2f ). This process
is repeated until the negative vorticity that was initially around the cyclonic core is
detrained and an elliptical core vortex remains that starts to move to the northwest.

3.2. Quantitative observations of the vortex structure

Typical vorticity contour plots of a vortex generated by the sink method are shown in
figure 3. The initial vortex is characterized by a core of intense positive vorticity. The
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(a) (b)

(c) (d)

(e) ( f )

Figure 2. Sequence of images showing the evolution of an isolated vortex at (a) 75 s, (b) 125 s, (c)
187 s, (d ) 212 s, (e) 300 s and (f ) 488 s after its generation. The rotation rate is f = 0.25 s−1, and
β = 0.0406 m−1 s−1. The field of view is 1.91× 1.38 m2.

displacement of fluid in the ambient owing to the northwest-moving vortex leads to
the generation of negative vorticity which organizes into filaments that are wrapped
around the core vortex, as shown in figures 3(b) to 3(d ). The filaments are a typical
feature of intense sink vortices and cannot be seen clearly in the dye experiments.
They extend over a large region far from the initial vortex and are created by the
differential rotation of iso-potential vorticity contours (Reznik 1992).

From sequences of kinetic energy density plots (not shown here), an enveloping
Rossby wave was observed to propagate southwestward, perpendicular to the trans-
lation direction of the vortex. This wave is generated during the initiation of the
vortex and is not immediately visible because its vorticity is initially weak compared
to the vorticity in the vortex. The Rossby wave crest corresponds to the long filament



360 J.-B. Flór and I. Eames

50

40

30

20

10

0 10 20 30 40 50

(a)

50

40

30

20

10

0 10 20 30 40 50

(b)

50

40

30

20

10

0 10 20 30 40 50

(c)
50

40

30

20

10

0 10 20 30 40 50

(d)

Figure 3. Typical vorticity contours for a sink vortex for times (a) 1 s, (b) 49.6 s (c) 86.6 s and
(d ) 111.6 s after the vortex has been generated. Black and grey contours represent anticyclonic
(negative) and cyclonic (positive) vorticity, respectively; contour steps are 0.05 of the maximum
vorticity, whereas the values around zero are omitted to suppress noise. The horizontal and vertical
length scales are indicated in cm along the axis. The experimental observations correspond to
experiment EF in table 2, where the tank rotation time is 12.5 s and β = 0.289 m−1 s−1.

of cyclonic vorticity generated adjacent to the vortex and envelopes the vortex as
its rolling tip (see figure 3). The total wavelength is set by the diameter of the
monopolar vortex, as also indicated by numerical investigations on westward moving
vortices by McWilliams & Flierl (1979). Eventually, the vortex is enclosed by a ring of
anticyclonic vorticity, leading in some cases to an isolated vortex and a mode two in-
stability (see figure 1d ), but often this vorticity was too weak and the vortex remained
stable.

Figure 4 shows the time evolution of the streamfunction which corresponds to the
vorticity field in figure 3. The streamfunction was corrected for the vortex translation
velocity, so that the contours represent the motion in the frame moving with the
vortex centre. The translation velocity of the vortex was obtained by differentiating
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Figure 4. Stream function contours which are corrected for the translation velocity of the vortex
and correspond to the vorticity fields in figure 3.

the displacement of the vortex centre with respect to time, and this is discussed in more
detail in § 3.3. The plot indicates that the core vortex is isolated and approximately
circular (figure 4a–c). The stagnation point gives information about the location and
relative strength of the advected vorticity and is located approximately at the same
position relative to the vortex. This suggests that the vortex moves approximately in
a straight line. The convergence of the streamline contours at the east of the vortex
corresponds to a region of high shear (figure 4d ). At large time, the direction of
motion of the vortex appears to change (as indicated in figure 4d), in accordance with
the observations of Carnevale et al. (1991), and this was attributed to the reflection
of Rossby waves from the tank walls.

Figure 5 shows the time evolution of the vorticity contours of an initially isolated
vortex, and the corresponding streamfunction plots are shown in figure 6. The core of
the vortex is surrounded by a ring of anticyclonic vorticity. Shortly after generation,
the vortex core experiences a slight westward shift, as can be inferred from figure 5(b).
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Figure 5. Contour plots of the vorticity for an isolated vortex generated by the stirring method for
(a) 60 s; (b) 87.5 s; (c) 125 s; (d ) 150 s; (e) 175 s; and (f ) 200 s after forcing. The internal diameter of
the cylinder used to generate the vortex is 50 cm. Contour steps are chosen 0.05 ωmax and 0.07 ωmax
around zero to suppress the noise; black and grey contours represent anticyclonic (negative) and
cyclonic (positive) vorticity, respectively. Vertical and horizontal length scales are indicated in cm
along the axis. Parameters are f = 0.25 s and β = 0.0406 m−1 s−1. Experiment AH in table 2.
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Reorganization of anticyclonic vorticity leads to an asymmetric dipolar-like vortex
which is clearly visible in the vorticity contours (figure 5b–d ) and the corresponding
streamfunction contours (figure 6b–d ). In contrast to most asymmetric dipolar vortex
structures, which move along a curved path, the vortex structure in figure 5 moves
along an approximately straight line to the north, suggesting a quasi-monopolar
structure (Stern & Radko 1998) or a Chaplygin dipolar structure (see Meleshko &
van Heijst 1994). As can be inferred from figure 6(d–f), cyclonic vorticity generated
at the east detrains part of the ring vorticity into the long wake. The cyclonic vorticity
is weak and not resolved by the contours in figure 5, but since the cyclonic vortex is
large, the circulation is not negligible (see comments relating to figure 2). The vortex
eventually evolves into a tripolar-like structure, as shown in figures 5(f) and 2(c), with
an elliptical core and two patches of anticyclonic vorticity. The patch of anticyclonic
vorticity south of the vortex has half the value in vorticity of the patch north of the
vortex and is therefore of minor influence on the vortex trajectory which continues to
move to the north.

4. Vortex trajectory and translation speed
4.1. Characterization of the initial vortex

The vortex centre, defined by the vorticity maximum, was determined by taking a
spline approximation to the vorticity field around the vorticity maximum. Cross-
sections of velocity and vorticity were taken through the vorticity maximum along
lines parallel to the east–west direction. Figures 7(a) and 7(b) show time sequences
of the cross-sectional velocity profile of a vortex generated by the stirring and sink
method, respectively. The velocity profiles are shifted along the x-axis, so that x = 0
corresponds to the vorticity maximum. The velocity is normalized by the minimum
velocity (|vθmin|) but the horizontal axis, representing the radial distance from the
vortex centre, is kept in dimensional form to indicate the size of the vortex. The
velocity profiles for the vortex generated by stirring (figure 7a) show an initially
symmetric profile and subsequently an increase of maximium velocity, followed by
a decrease at the eastside. This is due to the presence of an anticyclonic vortex
(figure 6b,c) that causes a dipolar motion. The corresponding profiles for the sink
vortex become asymmetric due to the generation of Rossby waves in the far field.
This leads to a much larger northward velocity, known as a beta-gyre (Sutyrin &
Flierl 1994). Figures 7(a) and 7(b) indicate that the change in the diameter of the
vortex core, represented by the distance between the maximum and minimum values
of velocity, is negligible over the time scale of the experiment.

In order to characterize the vortex velocity profile after its generation, the exper-
imental velocity profiles were fitted by a similarity solution of the radial diffusion
equation on the f-plane,

v̂θ(r̂) =
1

r̂
exp(− 1

4
r̂2)W 1

2 (α−1), 12
( 1

2
r̂2), (4.1)

where r̂ = r/Rvm, v̂θ = vθ/vθm and W is the Whittaker function (Gradshteyn & Ryzhik
1980 p. 157). The velocity profile of an isolated vortex (α = 3) is given by

v̂θ = r̂ exp(− 1
2
r̂2), (4.2)

whereas for α = 1 we obtain a velocity profile for a non-isolated (Gaussian) vortex

v̂θ =
1

r̂
(1− exp(− 1

2
r̂2)). (4.3)
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Figure 6. Streamfunction contours corresponding to the vorticity field shown in figure 5,
after corection for the vortex translation.
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Figure 7. Typical measurements of the azimuthal velocity along an east-west cross-section through
the vorticity maximum for (a) an isolated vortex (b) a quasi-non-isolated. The bold line indicates
the initial profile. The time difference between each pair of profiles is one rotation period which
corresponds to 50 s (at Coriolis platform) and 12.5 s (small turntable) for (a) and (b) respectively.

Equation (4.1) represents a continuous range of velocity profiles with the steepness
increasing monotonically with α. Although this family of similarity solutions is strictly
valid for an f-plane, on a time period smaller than 1/(βRvm), over which the beta effect
is expected to be relatively small, the initial vortex structure is described to leading
order by (4.1). The initial velocity profile was compared with similarity solutions over
the range r/Rvm < 3.0, and α was determined from the curve of best-fit, of which two
typical examples are shown in figure 8. From these fits, the vortex was characterized
by Rvm, vm and α. Vortices generated by the stirring method are characterized by
1.4 < α 6 3, whereas vortices generated by suction are characterized by α close to 1.
Table 2 summarizes the measured properties of the monopolar vortices characterized
in the experimental study.

4.2. Trajectory of the vortex centre

Figure 9(a) shows the vortex trajectory for four different values of α. Vortices generated
by a sink (characterized by α < 1.4) move along a straight line to the northwest,
whereas vortices generated by stirring (1.4 < α < 3) show a tendency to move more
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Figure 8. Typical cross-sectional velocity profiles along an isoline of potential vorticity fitted with
the profile given by equation (4.1) for (a) α = 2.9 and (b) α = 1.1.

Exp. α R2 θ ± 5 Rvm (cm) vθm(cm s−1) β(m−1 s−1) U(cm s−1) Ro =
vθm

fRvm
δ

AA 3.0 0.99 90 13.8 2.1 0.0406 0.21 0.61 27
AB 3.0 0.99 85 12.9 2.0 0.0406 0.20 0.62 30
AC 2.3 0.99 72 12.8 1.8 0.0406 0.22 0.56 27
AE 3.0 0.97 90 12.0 1.9 0.0406 0.18 0.63 32
AH 2.7 0.997 77 11.2 3.2 0.0406 0.32 1.14 63
AI 1.4 0.985 51 9.4 0.6 0.0406 0.16 0.26 17
AJ 2.6 0.996 75 9.7 1.6 0.0406 0.20 0.66 42
AL 3.0 0.999 90 9.1 1.8 0.0406 0.21 0.79 54
AO 3.0 0.982 90 8.0 0.3 0.0406 0.12 0.15 12
AP 1.6 0.991 62 10.0 1.0 0.0406 0.19 0.40 25
AQ 3.0 0.97 78 11.6 3.5 0.0406 0.41 1.21 64
EB 0.9 0.9995 34 3.9 1.05 0.289 0.27 0.27 24
EC 1.2 0.996 40 3.5 0.94 0.289 0.22 0.27 27
ED 1.1 0.998 48 2.5 0.63 0.289 0.11 0.25 35
EE 1.2 0.99 51 3.3 0.45 0.289 0.13 0.14 14
EF 1.1 0.997 40 3.2 0.47 0.289 0.13 0.15 16
EG 1.1 0.998 45.7 2.5 1.5 0.289 0.28 0.6 83
EH 1.2 0.998 36.5 2.6 2.1 0.289 0.32 0.81 107
FA 1.4 0.996 57 3.5 0.8 0.289 0.23 0.23 23
FB 1.2 0.998 49 2.5 1.25 0.289 0.24 0.5 69
FC 1.1 0.997 48 2.9 1.12 0.289 0.22 0.39 46
FD 1.4 0.995 50 3 0.9 0.289 0.21 0.3 35
FE 1.5 0.996 49 2.5 1.3 0.289 0.23 0.52 72
FF 0.9 0.992 37 4.7 0.5 0.289 0.19 0.11 8
GA 0.8 0.998 40 4.7 1.15 0.289 0.32 0.24 18
GB 1.3 0.993 52.8 2.5 1.2 0.289 0.18 0.48 66
GC 1.0 0.997 33.2 5 0.95 0.289 0.35 0.19 13

Table 2. Initial vortex parameters measured after their generation by means of PIV. The ex-
periments with β = 0.0406 m−1 s−1 – with initial A – represent experiments performed on the 13 m
diameter Coriolis turntable, other experiments – with initials E, F and G – are performed on the
1 m2 turntable. R2 is the correlation value of the fit of similarity solution for the velocity profile to
the experimental measurements, of which typical examples are shown in figure 8, and θ represents
the angle between the west and northward direction of propagation. The translation speed U is
obtained by differentiating the position of relative vorticity maximum with respect to time. The
speed shown in the table is determined by averaging over ten measurements and showed a variation
of typically 50%. Experimental series E, F and G and experiments AI and AP are generated by the
sink method, in other experiments the stirring method is used.
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Figure 9. (a) Trajectory of vortex centre for various values of α = 0.95, 1.6, 2.7 and 3.0. The time
step between the data points is 12.5 s. (b) The variation of the angle the trajectory makes to the
west, θ, with α (measured from fits shown in figure 8). The circles show the experiments conducted
at the Coriolis platform, the squares represent the experiments on the square table and concern
all sink vortices. (⊗) the value obtained for a stirred vortex that has lost its anticyclonic vorticity,
represented by α = 3.0 in (a). 4, numerical results of Carnevale et al. (1991) for α = 1.0 and 3.0.

northward. The large radial gradient of the azimuthal velocity of vortices characterized
by α ≈ 3 means that they become unstable and develop into a tripolar vortex (denoted
by ∇ in figure 9a). When the ring of anticyclonic vorticity is eventually detrained into
the wake, the vortex propagates to the northwest in the same direction as vortices
characterized by α ≈ 1 (see figure 9a). Measurements of the velocity profile at this
stage of the flow evolution reveal a comparable α-value to sink vortices.

The direction of motion of the vortex centre was averaged over two background
rotation periods. Figure 9(b) shows the variation of the angle the trajectory makes
with the west, and indicates that θ increases with α. For α = 3, the vortex is often
barotropically unstable, as mentioned above, and either the secondary vortices of the
tripole, or the anticyclonic vortices shed in the wake induce a dipolar moment on
the parent vortex to the east (see figures 2(f ) and 5(f )). This leads to a propagation
direction that is at variance with the tendency in the data (see figure 9b). For
values of α < 3, the vortex remained stable. Results inferred from the numerical
simulations of Carnevale et al. (1991) for the initial direction of motion of monopolar
vortices, characterized by α = 1 and 3, are plotted in figure 9(b), showing a reasonable
agreement with the experimental results. It is important to note that the dimensionless
parameter δ = vθm/βR

2
vm varies considerably over the experiments (see table 2 and

figure 10a) and is not correlated to the direction of motion. Since the strength of
the beta-plane is essential for vortex motion, it may appear counterintuitive that the
initial direction of motion does not depend on β. However, the translational speed of
the vortex depends on β and is zero in the absence of a beta-plane.

4.3. The vortex translation speed

The translational velocity of the vortex was measured from the displacement of the
maximum of vorticity and was averaged over four tank rotation periods after the
vortices were generated. Figure 10(a) shows the variation of the translation speed of
the vortex with the maximum azimuthal velocity, both scaled by βR2

vm; the vortices
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Figure 10. (a) Variation of the translational speed of the vortex U with the maximum azimuthal
velocity vθm, where both velocities have been scaled with βR2

vm. In both plots, the circular dots
represent vortices generated on the Coriolis platform and the square dots represent vortices generated
on the 1 m2 tank; closed symbols represent vortices with α < 1.4 and open symbols represent
vortices with α > 1.4. The propagation speed of the sink vortices was fitted with a correlation
U/βR2

vm = 0.8(vθm/βR
2
vm)0.64 (with correlation coefficient = 0.96). (b) Shows a comparison between

the predicted speed of the Rossby waves ∼ β(2Rr)
2 and the translation speed of the vortex which

is discussed in the text.

generated by the sink and stirring methods are distinguished by closed and open
symbols, respectively. Vortices generated by stirring are characterized by α > 1.4
and move slower than sink vortices, as also noted by Carnevale et al. (1991). The
difference in the propagation speed principally arises from Rossby waves which
interact with the vortex. Rossby waves may be generated by the translational motion
or the azimuthal flow of the vortex. However, since the vortex moves faster than
long Rossby waves (see figure 10), the waves are predominantly generated by the
azimuthal flow generated by the vortices. The initial velocity profile of sink vortices
(characterized by α < 1.4) decays slowly with distance from the vortex centre and
therefore generates a perturbation to the potential vorticity field over a large area,
leading to relatively fast Rossby waves, which were observed to be in phase with the
vortex motion. In order that the azimuthal velocity field is in phase with the Rossby
waves, the azimuthal speed must match the Rossby wave phase speed at a distance
Rr from the vortex core, so that

vθ(Rr) = β(2Rr)
2, (4.4)

must be satisfied. Combining (4.1) with (4.4) enables the evaluation of the wave
length of the Rossby waves, 2Rr , and implicitly their phase speed cph = β(2Rr)

2 for
each value of α and vθm. Comparisons between the phase speed of the Rossby waves,
based on a wavelength 2Rr , with the translation velocity of the vortex U are shown in
figure 10(b) and show good agreement with U = 0.4β(2Rr)

2 (correlation R2 = 0.96)
for vortices with α < 1.4. Experimental observations discussed above strongly suggest
that the vortex translates in the direction of energy propagation (i.e. direction of the
group waves), and not in the direction of the phase speed, which may explain why
the coefficient is close to 1

2
. This correlation underlines once more the dominant effect

of the Rossby waves on the dynamics in contrast to compact vortices with α > 1.4,
which are characterized by an azimuthal velocity which decays rapidly with distance,
so that energy associated with the Rossby waves is small.
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5. Mechanistic model of the monopolar vortex
5.1. The model

A number of approaches have been applied to describe the dynamics of monopolar
vortices on the beta-plane, including formal asymptotic expansions of the vorticity
equation in βR2

vm/vθm (Reznik & Dewar 1994) or dimensionless time (Adem 1956).
Rossby (1948) originally adopted a mechanistic approach to explain the phenomenon
of monopolar vortex motion on the beta-plane by treating the vortex as a circular
patch of vorticity subject to the Coriolis force, which after integrating over the vortex
area leads to a northward (Rossby) force

FR = ρβ

∫ R

0

πr2vθdr, (5.1)

where R is the vortex radius and ρ is the density of the ambient fluid (see § 1).
In this paper, the Rossby model is generalized by the inclusion of additional forces.

When the circulation around the vortex Γ (= 2πRvθ(R)) is zero, the only force acting
on the vortex is the Rossby force which is directed towards the north. However,
when vθ(R) > 0, the circular patch has a positive circulation and coupled with the
translation is subject to the lift force. This force arises from a velocity difference (and
pressure drop) between east and west of the vortex, resulting from the combined
effect of the northward motion of the patch and the circulation around it. The lift
force may be interpreted as arising from equal contributions from the momentum
flux far from the cylinder and the pressure force (see e.g. Batchelor 1967, p. 407). The
lift force was not included in the seminal work of Rossby.

We implicitly assume that the vorticity generated inside the vortex is small compared
to the vorticity present in the vortex patch (i.e. δ � 1), so that our model applies
to intense vortices. As with Rossby, we assume a potential flow around the vortex.
For isolated vortices this advected vorticity is small, but its importance increases for
vortices with weaker decaying velocity profiles, i.e. smaller α-values. The validity of
the model with respect to α will be discussed later.

It is relevant to note the analytical model of Korotaev & Fedotov (1994) on the
motion of Gaussian monopolar vortices (i.e. α = 1). Their physical model reduces to
a quasi-steady balance between the Rossby force directed northward, and, in contrast
to the present model, a southward lift force generated by the circulation around a
westward moving vortex.

The total force on a circular vortex arises from the Rossby force, the lift force due
to circulation Γ , and the added-mass force due to the displacement of fluid by the
vortex as it moves around. This flow is identical to the potential flow around a circular
cylinder containing circulation and subjected to an external force. The general case
of this classical flow problem is treated by Lamb (1932 p. 80). Below, we derive the
integrated equations of motion from the Euler equations in the rotating frame of
reference given by

Du

Dt
= −∇p− 2Ω(y)ẑ × u. (5.2)

The translative motion of the vortex is in good approximation geostrophic (since
the Rossby number defined by the vortex translation speed U is U/fRvm � 1) so
that to leading order the pressure force is balanced by the Coriolis force on the
moving vortex. The total force on a circular vortex of radius R, density ρ, obtained
by integrating the pressure variation over the surface of the vortex and adding the
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Rossby force FRŷ become

ρπR2 dv

dt
= −

∫
S

pn̂dS + FRŷ, (5.3)

where n̂ is the unit vector normal to (and out of) the surface of the vortex and
v = (u, v) is the translation velocity of the vortex. The contribution from the pressure
variation over the vortex surface may be calculated by evaluating the momentum flux
far from the vortex. When the outer flow is to leading order irrotational, this force is

−
∫
S

pn̂dS = −ρπR2 dv

dt
+ ρΓ ẑ × v, (5.4)

which correspond, respectively, to the added-mass force of a cylinder and the lift force
induced by the circulation. Combining (5.3) and (5.4), we find that the dynamics of a
circular vortex are to leading order described by

2ρπR2 dv

dt
= ρΓ ẑ × v + FRŷ. (5.5)

Integrating (5.5) with respect to time, subject to the initial condition that the vortex
starts from rest at the origin, gives

u = − FR
ρΓ

(
1− cos

(
Γt

2πR2

))
, v =

FR

ρΓ
sin

(
Γt

2πR2

)
. (5.6)

The translation speed U and direction of motion θ to the west calculated from (5.6)
are

U =
√
u2 + v2 = 2

FR

ρΓ
sin

(
Γt

4πR2

)
, θ = tan−1

(
− v
u

)
=
π

2
− Γt

4πR2
. (5.7)

Substituting the expressions for the Rossby force FR (5.1) and circulation Γ , the
translational speed and direction of motion are

U = β

∫ R

0

r2vθdr

Rvθ(R)
sin

(
vθ(R)t

2R

)
, θ = 1

2
π− vθ(R)t

2R
. (5.8)

According to (5.8), the vortex speed is determined by the strength of the beta-plane,
but the direction is independent of β. The trajectory of the vortex centre is

x(t) = −2πR2FR

ρΓ 2

(
Γt

2πR2
− sin

(
Γt

2πR2

))
, y(t) = −2πR2FR

ρΓ 2

(
1− cos

(
Γt

2πR2

))
.

(5.9)

The vortex follows a trochoid trajectory between its initial latitude and the north.
According to the model above, the direction of motion changes with time because a
balance between the forces acting on the vortex is not achieved.

The strength of this simple model is that it appears to capture the gross dynamics
of monopolar vortices on a beta-plane: the initial direction of motion of the vortex
depends on the azimuthal velocity profile through α, which is a measure of the
steepness of the velocity profile. The initial vorticity distribution within the vortex
essentially controls the ratio of the Rossby force, driving the vortex north, and the
lift force which drives the vortex west. This explains physically why compact vortices
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Figure 11. (a) �, The dimensionless vortex radius R/Rvm determined from vorticity profiles given
by (4.1) with α = 1.0, 1.8 and 3 by the criterion |ω| > 1% ωmax. (b) The variation of this radius
with α for the criteria; �, |ω| > 0.5% ωmax; ◦, |ω| > 1% ωmax; +, |ω| > 2% ωmax.

characterized by α ∼ 3 propagate to the north because the lift force is weak whereas
vortices characterized by α ∼ 1 move to the northwest.

5.2. Comparison between model and experiments

To interpret the effect of α on the vortex dynamics, the translational speed U and
direction of motion were measured for different times after vortex generation t = 0.
The initial flow in the monopolar vortex is azimuthal and described by (4.1) which is
known from the analysis in the measurement-section and includes all velocity profiles
ranging from isolated to non-isolated vortices. In order to compare the model with the
experimental measurements, a vortex radius R is chosen and is defined to be the outer
radius where the absolute value of the vorticity has decreased to 1% of its maximum
value. The impact of vorticity on the vortex outside this region is considered to be
negligible; the 1% threshold was chosen because it is comparable to the experimental
error in the vorticity measurements. Figure 11(a) shows three examples of the choice
of R for different values of α (1.0, 1.8 and 3). Figure 11(b) demonstrates the sensitivity
of R to the chosen percentage which was 1%. In the range of 1.2 < α < 2, the
vorticity tends very slowly to zero so that a small percentage may result in a very
large radius (see figure 11a); larger percentages show less variation.

The translation velocity and angle of propagation were calculated with (5.8) using
the experimental values for Rvm, vθm, β and α. Comparison with the experimental data
showed best agreement for time t = t∗/βRvm, based on the time scale 1/βRvm. The
dimensionless time t∗ was used as a fit parameter and best results were obtained for
t∗ = 0.8. Comparisons between experimental measurements and model predictions
are given in figure 12(a) for the translation speed U and the translation direction in
figure 12(b), with the ideal correlation corresponding to a straight line. The closed
symbols represent experiments with α > 1.4, whereas the square symbols represent
sink vortices characterized by α < 1.4. Sink vortices generally move to the northwest
with a faster translational speed than the model predicts (figure 12a). When α < 1.4,
the difference between the predictions and experimental measurements is due to the
dominant influence of Rossby waves on the vortex propagation, which is not included
in the model. The error bars indicate the effect of the variation in the choice of the
above-mentioned percentage between 0.5% and 2% for vortices with α > 1.4. As
was to be expected from figures 11, the deviation becomes larger with decreasing
values of α. Nevertheless, the agreement between model predictions and experimental
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Figure 12. Comparison between experimental measurements (vertical axes) and the prediction by
the mechanistic model (horizontal axes) obtained from (5.8) for (a) the translation velocity and
(b) the direction of propagation. •, values for α > 1.4; �, values for α < 1.4. In both graphs the
error bars indicate the variation in the predicted values when the criterion for the vortex radius is
slightly modified (|ω| > 0.5% ωmax to |ω| > 2% ωmax). The corresponding variation in radius is
shown in figure 11.

measurement is satisfactory for isolated vortices characterized by α > 1.4, and shows
the difference with the vortices dominated by Rossby wave dynamics.

6. Discussion
6.1. Isolated vortices

The main difference between the mechanistic model and previous asymptotic models
is that the coherence of the vortex is conserved by supposing the vortex as a
cylindrical patch during its time evolution. The experimental observations justify this
approach: the vortices ‘leak’ vorticity but they keep their coherence during the initial
flow evolution. The mechanistic model simplifies the inherent complex dynamics of
monopolar vortices by neglecting the influence of the vorticity generated in the outer
field. In fact, this influence is to some extent replaced by the lift force; when radiation
by Rossby waves becomes important and the far flow contains vorticity, the model
breaks down. Nevertheless, this model shows that the forces acting on a cylindrical
patch derived from potential flow theory describe reasonably well the propagation
direction and speed of the vortex for isolated vortices (with 1.4 < α < 3).

Figure 13 shows the direction of motion and translational speed calculated for
dimensionless times t vθm/Rvm = 5, 10 and 20, which correspond to t = O(30, 60) and
O(120) seconds in the experiments in this paper. The angle of propagation θ increases
monotonically with α, showing the same trend as depicted in figure 10a. Included in
figure 13 are the corresponding theoretical predictions of Reznik & Dewar (1994).
The general description of Reznik & Dewar (1994) is based on the limit vθm/βR

2
vm � 1

and provides integrable expressions (see Appendix) to calculate the vortex trajectory
based on the initial azimuthal velocity profile of the vortex. Both the mechanistic
model and the prediction by Reznik & Dewar (1994) show the same trend for small
α, whereas for α > 1.5, the Reznik & Dewar (1994) model underpredicts the angle of
motion which tends to values much smaller than 90◦.

Reznik & Dewar (1994) mention that the energy and angular momentum is infinite
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in the far field. This implies dominant Rossby waves, and raises important questions
about the far-field assumptions. These Rossby waves drive the vortex westward.
Reznik & Dewar results indeed show a tendency of a stronger westward vortex
motion than the present experimental results suggest.

6.2. Non-isolated vortices

For α < 1.4, the Rossby waves generated by the slowly decaying velocity field
determine the vortex propagation speed which is faster than for the case α > 1.4.

Korotaev & Fedotov (1994) studied the motion of an intense Gaussian vortex (i.e.
α = 1) propagating on a beta-plane assuming that the vortex moves primarily in
a westerly direction. They treated the vortex as a coherent structure, and divided
the flow into a fluid region transported with the vortex, enclosed by the stagnation
streamline, and the flow outside. Using asymptotic analysis, they showed that the
vortex moves to the west relative to the surrounding fluid while being transported
to the north by the broad flow induced by Rossby waves. They suggest that their
vortex has the same phase (and speed) as the Rossby wave and that the energy of
the vortex is communicated into Rossby waves propagating away from the vortex.
Though our vortices with α < 1.4 propagate with approximately half the phase speed,
our experimental results support this view qualitatively. However, the direction of
propagation of their vortices depends strongly on their small parameter (δ)−1/4, an
effect that they consider a paradox that may arise from the use of asymptotic series.

Llewellyn Smith (1997) showed that the zeroth-order response to a non-isolated
(Gaussian) vortex is a linear Rossby wave with amplitude proportional to the cir-
culation of the vortex. Indeed, the circulation calculated from experimental values
on a limited domain of size 10Rvm correlated approximately linearly with the vortex
translaton speed of vortices characterized by 1.0 6 α 6 1.2. (The robustness of this
result was tested by calculating the circulation over a significantly larger region,
100Rvm.) For different values of δ, the calculations of Llewellyn Smith show that the
vortex centre represented by the relative vorticity maximum moves initially in the
same direction (θ ≈ 70) and, depending on the initial value of δ, move sooner or
later to the west. The present results show that the vortex velocity and propagation
direction are dominated by Rossby waves that transport the vortex in the northwest
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direction between 34◦ and 48◦. The variation in δ (from 7 to 110; see table 2) reported
here did not appear to lead to a variation in propagation direction.

Current asymptotic models appear to predict the vortex translation speed but fail
to predict the vortex translation direction. As shown in figure 10, we can predict the
translation velocity by using the correct scaling, which is similar in all asymptotic
models. However, the direction of propagation is more difficult to predict. The
experiments suggest that the vortices (for α < 1.4) are transported by the Rossby
waves, implying a different approach from a matching between the vortex edge and
ambient of the vortex. The influence of the vortex patch is presumably overestimated
by this approach, thus explaining the more northward propagation direction of
Gaussian vortices by Llewellyn Smith (1997).

7. Conclusions
Based on a systematic experimental study over a wide range of parameters and

physical models, we have shown that the initial direction of motion of the vortex
depends critically on α, which is a measure of the steepness of the velocity profile, and
weakly dependent on its original size Rvm and maximum azimuthal velocity vθm. The
initial velocity profile within the vortex essentially controls the ratio of the Rossby
force, which drives the vortex north, and the lift force which drives the vortex initially
west. Compact vortices characterized by α ∼ 3 initially move to the north because
the lift force is weak whereas vortices characterized by α ∼ 1 initially move to the
northwest.

When α < 1.4, Rossby wave generation appears to dominate the vortex dynamics.
Comparison with the long-wave Rossby wave speed, based on a balance between
Rossby wave speed and vortex speed, shows a strong correlation with experimental
observations (figure 10b). Generally, the translational speed of the vortex depends on
both α and vmθ/βR

2
vm.

For large time, the structure of the vortices changes, but the direction of motion still
appeared to be correlated to the instantaneous value of α. Isolated vortices (α ∼ 3.0)
ultimately detrain anticyclonic vorticity so that α decreases and the vortex eventually
moves to the northwest. Conversely, intense suction vortices increase in α and showed
a tendency to eventually move to the north. In the final stage, Rossby waves were
relatively strong and obscured the weak vortex.

To interpret the effect of the initial structure of the vortex (characterized by α)
on the vortex dynamics, a mechanistic model of vortex dynamics was developed
by extending Rossby’s original model by the inclusion of a lift force. Despite the
simplicity of the model, it has a clear physical interpretation with the vortex moving
northward owing to the Rossby force and westward owing to the lift force. Favourable
comparison with the experimental observations is found. The effect of Rossby wave
drag on the vortex translation is not a feature of the model, and comparison of the
model with the experimental data distinguishes the two regimes (α < 1.4 and α > 1.4).
The general trend of the direction of motion and translational speed with α > 1.4 is
supported by the model.

The correlation between the direction of propagation and the internal structure
of the vortex, reported here for Bu � 1, is similar to that reported by Stegner &
Zeitlin for the case of Bu � 1. Stegner & Zeitlin (1998) correlated λ, the ratio of
the free-surface elevation to the fluid-layer thickness, with the direction of translation
θ and observed θ to increase with λ−1. In the present paper, the experiments were
characterized by Bu� 1 and the direction of motion θ increased with the azimuthal
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vorticity profile (α). This suggests that the underlying mechanism which controls the
dynamics of vortices may be comparable in the limits of Bu� 1 and Bu� 1, where
the relative vorticity in (1.1) plays a similar role to the potential vorticity (ω) as the
free surface (η) when Bu� 1.

The transport of pollution by vortices is related to their direction and speed of
propagation and was first studied for dipolar vortices on the f-plane (Eames & Flór
1998). The mechanistic model offers new perspectives that enables further quantitative
study on the displacement of fluid by vortices moving on the beta-plane which will
be subject of a forthcoming investigation.
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Appendix
The asymptotic solution for the vortex trajectory calculated by Reznik & Dewar

(1994) is outlined. The azimuthal velocity is scaled with vθm and time scale by Rvm/vθm.
The velocity of the vortex centre is calculated

ṽ + iũ = t̃

∫ ∞
0

F(r̃) exp

(
− iṽθt̃

r̃

)
dr̃, (A 1)

where F(r̃) = (1/r̃3)
∫ r̃

0
r̃2ṽθdr̃, ṽ = vθ(r̃)/vθm and r̃ = r/Rvm. The velocity profile is

calculated by rescaling the solution (4.1) with the maximum angular velocity and
corresponding radius. The trajectory of the vortex centre is calculated by integrating
(A 1) with respect to time.
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